p53 mutations in benzo(a)pyrene-exposed human p53 knock-in murine fibroblasts correlate with p53 mutations in human lung tumors.

نویسندگان

  • Zhipei Liu
  • Karl-Rudolf Muehlbauer
  • Heinz H Schmeiser
  • Manfred Hergenhahn
  • Djeda Belharazem
  • Monica C Hollstein
چکیده

Human p53 mutation spectra differ significantly from one cancer type to another. One possible reason is that carcinogenic risk factors differ, and these factors elicit distinct mutation patterns. There has been no mammalian assay, however, with which to generate mutation patterns in human p53 sequences experimentally, hampering interpretation of the human tumor spectra. We have designed a new mammalian cell assay using gene targeting technology that selects and scores human p53 gene sequence mutations in human-p53 knock-in (Hupki) murine embryonic fibroblasts (HUF) that have undergone immortalization. With the Hupki assay we examined here whether benzo(a)pyrene (BaP), a major tobacco smoke carcinogen could elicit p53 mutation patterns characterizing the human lung tumor p53 mutation spectrum. We found that, in contrast to unexposed HUFs or HUFs exposed to other carcinogenic agents, HUFs exposed to BaP acquire mutations that display major features of the human lung tumor p53 mutation spectrum: (a) predominance of G-to-T mutations, (b) unequivocal strand bias of the transversions, and (c) a mutation hotspot at codons 157 to 158. These data are consistent with the hypothesis that BaP has a direct role in causing smokers' lung tumor p53 mutations. The assay can be used to examine various hypotheses on the endogenous or exogenous factors responsible for the p53 mutations in human tumors arising in other tissues.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Role of Tumor Protein 53 Mutations in Common Human Cancers and Targeting the Murine Double Minute 2–P53 Interaction for Cancer Therapy

The gene TP53 (also known as protein 53 or tumor protein 53), encoding transcription factor P53, is mutated or deleted in half of human cancers, demonstrating the crucial role of P53 in tumor suppression. There are reports of nearly 250 independent germ line TP53 mutations in over 100 publications. The P53 protein has the structure of a transcription factor and, is made up of several domains. T...

متن کامل

New p53 Gene Mutation in non-Cancerous Mustard Gas Exposed Lung

Objective Mustard gas (MG) is a poisoning chemical, mutagenic and carcinogenic alkylating agent. It is used during World War I and also Iran-Iraq conflict. The p53 tumor suppressor gene is involved in the pathogenesis of malignant disease. The aim of this study is to determine possible mutation in p53 gene of lung sample from mustard gas exposed patients. Material and Methods Twelve lung bio...

متن کامل

Mutations of p53 Gene in Skin Cancers: a Case Control Study

Background: The most frequently mutated tumor suppressor gene found in human cancer is p53. In a normal situation, p53 is activated upon the induction of DNA damage to either arrest the cell cycle or to induce apoptosis. However, when mutated, p53 is no longer able to properly accomplish these functions. The aim of this study was to investigate the expression of p53 gene in cases of skin cancer...

متن کامل

Selective targeting of p53 gene mutational hotspots in human cancers by etiologically defined carcinogens.

In lung and liver cancers, p53 mutations are mostly G:C to T:A transversions. This type of mutation is known to be induced by benzo(a)pyrene and aflatoxin B1 which are associated with the etiology of lung and liver cancers, respectively. Using a novel assay based on DNA polymerase fingerprint analysis, we identified p53 nucleotides targeted by these carcinogens. Thirteen of 14 nucleotide residu...

متن کامل

Benzo[a]pyrene-induced murine skin tumors exhibit frequent and characteristic G to T mutations in the p53 gene.

Human tobacco-related cancers exhibit a high frequency of G to T transversions in the mutation hot spot region of the p53 tumor suppressor gene, possibly the result of specific mutagens in tobacco smoke, most notably benzo[a]pyrene (B[a]P). No in vivo animal model of B[a]P-induced tumorigenesis has been used, however, to substantiate these molecular epidemiological data experimentally. Direct D...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cancer research

دوره 65 7  شماره 

صفحات  -

تاریخ انتشار 2005